จำนวนเฉพาะ ตัวประกอบเฉพาะ คณิตศาสตร์ ม.1

| Mathematics-M1 | 753 | 655 วันที่แล้ว
เราได้เรียนรู้และรู้จักตัวประกอบกันไปแล้ว ในบทความเรื่อง ตัวหาร ตัวประกอบ ตัวหารร่วม ตัวประกอบร่วม คณิตศาสตร์ ม.1 ถ้าเราสังเกตุตัวประกอบของจำนวนบางจำนวนจะเห็นว่ามีบางจำนวนที่มีลักษณะพิเศษอยู่ เราเรียกมันว่าจำนวนเฉพาะ มันมีลักษณะพิเศษยังไง เราไปทำความรู้จักจำนวนเฉพาะกัน

จำนวนเฉพาะ(Prime Number) หมายถึง จำนวนนับที่มากกว่า 1 และมีตัวหารหรือตัวประกอบเพียงสองตัวคือ 1 และตัวมันเอง

ลองพิจารณาสิ่งต่อไปนี้
1. ลองพิจารณาจำนวนเฉพาะทุกจำนวนที่มีค่าอยู่ระหว่าง 1 ถึง 20 ดังนี้
  - 2 มีตัวประกอบเพียงสองตัวคือ 1 และ 2
  - 3 มีตัวประกอบเพียงสองตัวคือ 1 และ 3
  - 5 มีตัวประกอบเพียงสองตัวคือ 1 และ 5
  - 7 มีตัวประกอบเพียงสองตัวคือ 1 และ 7
  - 11 มีตัวประกอบเพียงสองตัวคือ 1 และ 11
  - 13 มีตัวประกอบเพียงสองตัวคือ 1 และ 12
  - 17 มีตัวประกอบเพียงสองตัวคือ 1 และ 17
  - 19 มีตัวประกอบเพียงสองตัวคือ 1 และ 19
ดังนั้น 2, 3, 5, 7, 11, 13, 17, 19 เป็นจำนวนเฉพาะ
2. ลองเขียนจำนวนนับที่ไม่เป็นจำนวนเฉพาะดังนี้
  - 4 มีตัวประกอบคือ 1, 2, 4 แสดงว่า 4 ไม่เป็นจำนวนเฉพาะ
  - 9 มีตัวประกอบคือ 1, 3, 9 แสดงว่า 9 ไม่เป็นจำนวนเฉพาะ

ลองไปดูโจทย์กันบ้าง

ตัวอย่างโจทย์ฝึกหัด ลองพิจารณาจำนวนต่อไปนี้ว่าเป็นจำนวนเฉพาะหรือไม่
1) 8
2) 23
3) 28
4) 31

ตัวอย่างโจทย์ฝึกหัด จงหาจำนวนเฉพาะทุกจำนวนของจำนวนนับตั้งแต่ 1 ถึง 50
ตัวอย่างโจทย์ฝึกหัด จงหาจำนวนเฉพาะทุกจำนวนของจำนวนนับตั้งแต่ 50 ถึง 130

แจกไอเท็ม จำนวนเฉพาะตั้งแต่ 1-100 มีทั้งหมด 25 ตัว 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 และ 97 จำนวนเฉพาะตั้งแต่ 1-200 มีทั้งหมด 46 ตัว 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 และ 199 จำนวนเฉพาะตั้งแต่ 1-1000 มีทั้งหมด 176 ตัว 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 221, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 403, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 481, 487, 491, 499, 503, 509, 521, 523, 533, 541, 547, 559, 563, 569, 571, 577, 587, 593, 599, 601, 607, 611, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 689, 691, 701, 709, 719, 727, 733, 739, 743, 751, 767, 769, 773, 787, 793, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 871, 877, 881, 883, 887, 907, 911, 919, 923, 929, 937, 941, 947, 949, 953, 967, 971, 977, 983, 991 และ 997
ตัวประกอบเฉพาะ ตัวประกอบเฉพาะ(Prime Factor) หมายถึงตัวประกอบที่เป็นจำนวนเฉพาะนั่นเอง ตัวอย่างเช่น ตัวประกอบทั้งหมดของ 18 คือ 1, 2, 3, 6, 9, 18 เราจะพบว่า 2 กับ 3 เป็นจำนวนเฉพาะ ดังนั้นเราสามารถเรียกได้ว่า ตัวประกอบเฉพาะของ 18 คือ 2 และ 3
comments

[1]
Adobe-PDF
758 D
[1]
Android
649 D
[40]
Animal
742 D
[1]
Apache
758 D
[2]
[10]
[2]
CMS-SMF
759 D
[1]
[3]
[1]
Database
758 D
[4]
[1]
Docker
654 D
[1]
Fruit
742 D
[2]
Git
545 D
[5]
HTML
545 D
[1]
Housework
747 D
[2]
IT
739 D
[2]
Imacro
759 D
[17]
Java
542 D
[1]
Java-Web
649 D
[1]
[2]
MQL5
571 D
[3]
MakeMoney
544 D
[18]
[1]
Maven
543 D
[1]
Mobile
756 D
[1]
NodeJs
544 D
[3]
Physics
540 D
[4]
PugJS
544 D
[2]
React
554 D
[132]
Science
741 D
[1]
[2]
Spring
543 D
[7]
[2]
[1]
[4]
Ubuntu
709 D
[1]
WebLogic
740 D
[4]