ตัวตั้ง พหุคูณ ตัวตั้งร่วม พหุคูณร่วม คณิตศาสตร์ ม.1

| Mathematics-M1 | 5251 | 656 วันที่แล้ว
ตัวตั้งหรือพหุคูณ

เราได้รู้จัก ตัวหาร ตัวประกอบ ตัวหารร่วม ตัวประกอบร่วม กันไปแล้ว ในบทความนี้เรามาดูเรื่อง ตัวตั้ง พหุคูณ ตัวตั้งร่วม พหุคูณร่วม กันบ้างสำหรับใครที่ยังไม่ได้อ่านหรือทำความเข้าใจเรื่องตัวหาร ตัวประกอบ ตัวหารร่วม ตัวประกอบร่วม ก็กลับไปอ่านก่อนนะเพื่อความเข้าใจ

ในบทความที่แล้วเราพิจารณาการหารที่ลงตัว ดังตัวอย่างเช่น 10 ÷ 2 = 5

ในบทที่แล้วเราทราบว่า 2 หาร 10 ลงตัว และเราจะเรียก 2 ว่าตัวหารหรือตัวประกอบ มาบทความนี้เราพิจารณาตัว 10 กันบ้าง ซึ่งเราจะเรียกมันว่าตัวตั้ง(Dividened) หรือ พหุคูณ(Multiple) นั่นเอง

ดังนั้น เราสามารถให้ความหมายกับตัวตั้งหรือพหุคูณได้ คือ ตัวตั้ง(Dividened) หรือพหุคูณ(Multiple) ของจำนวนนับใด ๆ หมายถึงจำนวนนับที่หารด้วยจำนวนนับนั้นลงตัว

พิจารณาการหารต่อไปนี้
12 ÷ 12 = 1
24 ÷ 12 = 2
36 ÷ 12 = 3
48 ÷ 12 = 4
60 ÷ 12 = 5
72 ÷ 12 = 6

เนื่องจาก จำนวนนับ ที่หารด้วย 12 ได้ลงตัวถูกเรียกว่าตัวตั้งหรือพหุคูณของ 12
ดังนั้น ตัวตั้งหรือพหุคูณของ 12 ได้แก่ จำนวนนับที่มีค่าเท่ากับ 12, 24, 36, 48, 60, 72, ...
หรือ อาจกล่าวได้ว่า 12, 24, 36, 48, 60, 72, ... เป็นพหุคูณของ 12

จากพหุคูณของ 12 เราสามารถเขียนให้อยู่ในรูปการคูณได้ นั่นคือ
12 x 1 = 12
12 x 2 = 24
12 x 3 = 36
12 x 4 = 48
12 x 5 = 60
12 x 6 = 72
...
พหุคูณของ 12 คือ 12 x 1, 12 x 2, 12 x 3, 12 x 4, 12 x 5, 12 x 6, ...

จากความจริงข้างบนเราสามารถนำไปใช้เป็นเทคนิคคิดลัดได้ คือ 

บทนิยาม พหุคูณของ a เมื่อ a แทนจำนวนเต็มใด ๆ คือจำนวนในรูป an เมื่อ n เป็นจำนวนเต็ม

ไปดูตัวอย่างโจทย์กัน

ตัวอย่างโจทย์ จงหาตัวตั้งหรือพหุคูณของ 2
วิธีทำ
2 ÷ 2 = 1
4 ÷ 2 = 2
6 ÷ 2 = 3
8 ÷ 2 = 4
10 ÷ 2 = 5
12 ÷ 2 = 6
...
ดังนั้น พหุคูณของ 12 คือ 2, 4, 6, 8, 10, 12, ...

เราสามารถใช้วิธีคิดลัดได้ดังนี้
พหุคูณของ 12 คือ 2 x 1, 2 x 2, 2 x 3, 2 x 4, 2 x 5, 2 x 6, ...

ลองเอาโจทย์ไปทำดูกันนะ

ตัวอย่างโจทย์ฝึกหัด
จงหาตัวตั้งหรือพหุคูณของจำนวนนับต่อไปนี้
1) 3
2) 5
3) 8
4) 9
5) 4
6) 12
7) 15

ลองใช้วิธีคูณปกติ กับใช้แบบวิธีลัดดูครับ

ตัวตั้งร่วมหรือพหุคูณร่วม

จากบทที่แล้วเรารู้จักตัวหารร่วมหรือตัวประกอบร่วมกันไปแล้ว ในบทนี้เราก็ได้รู้จักตัวตั้งหรือพหุคูณกันไปแล้ว คงจะเดาออกว่า ตัวตั้งร่วมหรือพหุคูณร่วม ก็คือการที่มีตัวตั้งร่วมหรือพหุคูณร่วมของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไปนั่นเอง

ดังนั้นเราสามารถให้ความหมายของตัวตั้งร่วมหรือพหุคูณร่วมได้ คือ ตัวตั้งร่วม(Common Dividened) หรือพหุคูณร่วม(Common Multiple) ของจำนวนนับตั้งแต่ 2 จำนวนขึ้นไป หมายถึง จำนวนนับใด ๆ ที่หารด้วยจำนวนนับนั้นลงตัวทุกจำนวน เช่น

2, 4, 6, 8, 10, 12, 14, 16, 18, ... เป็นหุคูณของ 2
3, 6, 9, 12, 15, 18, ... เป็นพหุคูณของ 3

จะเห็นได้ว่า 6, 12, 18, ... เป็นพหุคูณของทั้ง 2 และ 3
ดังนั้น จึงเรียก 6, 12, 18, ... ว่าเป็นพหุคูณของ 2 และ 3

ลองเอาโจทย์แบบฝึกหัดไปทำดูกันนนะ

โจทย์แบบฝึกหัด
1) จงหาตัวตั้งร่วมหรือพหุคูณร่วมของ 5 และ 10
2) จงหาตัวตั้งร่วมหรือพหุคูณร่วมของ 12 และ 15
3) จงหาตัวตั้งร่วมหรือพหุคูณร่วมของ 8 และ 12
4) จงหาตัวตั้งร่วมหรือพหุคูณร่วมของ 3, 4 และ 6
5) จงหาตัวตั้งร่วมหรือพหุคูณร่วมของ 12, 15 และ 30
comments

[1]
Adobe-PDF
758 D
[1]
Android
649 D
[40]
Animal
742 D
[1]
Apache
758 D
[2]
[10]
[2]
CMS-SMF
759 D
[1]
[3]
[1]
Database
758 D
[4]
[1]
Docker
654 D
[1]
Fruit
742 D
[2]
Git
545 D
[5]
HTML
545 D
[1]
Housework
747 D
[2]
IT
739 D
[2]
Imacro
759 D
[17]
Java
542 D
[1]
Java-Web
649 D
[1]
[2]
MQL5
571 D
[3]
MakeMoney
544 D
[18]
[1]
Maven
543 D
[1]
Mobile
756 D
[1]
NodeJs
544 D
[3]
Physics
540 D
[4]
PugJS
544 D
[2]
React
554 D
[132]
Science
741 D
[1]
[2]
Spring
543 D
[7]
[2]
[1]
[4]
Ubuntu
709 D
[1]
WebLogic
740 D
[4]